QI 04, Seminar 1

Seminar overview.
Classical information units and processing.
Information science: The big picture.
Qubit state space.
Simple qubit gates.
Black box problems.
QUANTUM INFORMATION PROCESSING, SCIENCE OF - The theoretical,

experimental and technological areas covering the use of quantum
mechanics for communication and computation.
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Classical Information Units

The classical information unit is the bit.
The bit is a system with state space {o,1}.

o o
() 1

- Physical examples:
Mag. domain on a hard disk, state of mag. moment.
o is “right”, 1 is “left” magnetization.
Location on a piece of paper, ink pattern.
o if it looks like 0 , 1 if it looks like 1 .

Multiple units’ state space: By concatenation of states.
Two bits’ state space: {oo,01,10,11}.
How many states do n bits have? Answer: 2".
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Seminar overview

Goal: To learn the basic concepts and tools of quantum information,
appreciate its power and limitations, and understand the issues involved in
realizing it.

Prerequsites: Linear algebra, polynomials, binary logic, probability.
Structure: 15 seminars, each consisting of a 50min lecture, followed by
discussions and/or problem solving.

Grading: Based on participation—see hand-out. Required meeting with me
in the second half of the semester.

Assignments: Problems to be handed out. Errors in solutions handed in
have no effect on grade.

Reading: References provided in handout, limited number of hard copies
of LAScience issue.

Office hours: CU: Wednesdays after class, 1pm-3pm, S315 or by
appointment. NIST: Thursdays after class, 2:15pm-3:15pm, Bldg 1, Rm
4049, or drop in any time | am there.

Sign-up: Please provide your email, if possible. Let me know if it is difficult
for you to use PDF and PS attachments.
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Classical Gate Networks

A one-bit network.

Time |

Prepare in state o.
Flipo— 1,1 —o.

Reset to o.
>————>—
U/ L/

(0] 1 (0]
A three-bit network. Controlled-not { 00 — 00,01 — 01,

10 — 11,11 — 10!

Nand J 00 — 01
01 — 01,
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Classical Programming

Random access

machine
Memory Capabilities added:
Lo Program :
for k= 1to v » Loops, iteration,
recursion.
rT—x+k
i 2 > 9% then Unlversgllty:
'C_PU » Anything
x — floor (sqrt(z)) “effective”
| S can be computed
by a RAM.
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Quantum Information Science

Complexity
Information
Theory
Quantum physics Physical
" ) Realizations
Classical physics

« Motivation.
= Quantum cryptography. = Quantum physics simulation.

= Quantum factoring. = Unstructured search.
... Quantum control, complexity theory, . ..
» Practical relevance.

e QIP is physically realizable in principle:
Accurac y Threshold Theorem: If the error rate is sufficiently low,
then it is possible to efficiently process quantum information

arbitrarily accurately.
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Guide to Information Processing

Information type

Deterministic

Information Combining IUs
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S %
Q Z
X read  out el 2
L G, &
] Quantum &
N 2
¥ %
S %
5
o o) Py ;
"G, S < .
20 % Ss
¢ %, & :
@ © N\ - i
One IU S (\5\ Multi 1U
control 4 L& control

Programming

Iteration
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The Quantum Bit

e The qubit: A system with (pure) state space all
superpositions of two logical states |o) and |1):

{ afo) + Blr) with |af* + 5> =1 }

e Examples: o), 1),
o) + L),
T5lo) + 5l
Slo) + £|1).
-The ket: ¢ € CV
w For example: [1) = 2lo) + (1)

system | ~—~~—" |system
delimiter| Stte Symbol jojimiter
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State Space Representations

Vectors.

alo) + 41 < ()

Bloch sphere. P

/
S

—

Y
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Spin 1/2 Qubit

e Spin 1/2 in oriented space: One particle in a superposition
of the states “up” (|1)) and “down” (||)).

\
a
-
~ e
Orientation of magnetic moment (average) corresponds to the state in
the Bloch sphere.

Examples include nuclear spins of 13C and ' H.
These are observable by nuclear magnetic resonance.

Distinguish |T) from ||) by using a Stern-Gerlach apparatus:

»
alo) + Bl1) = e"/2 cos(0/2)|0) + e'*/?sin(6/2)|1)
Global phase:
alo) 4+ Bl1) and e'alo) + €' 3|1) are the same state.
8 J 10
Photonic Qubit One-Qubit Gates |
e Photonic qubit: One photon in a superposition of two State preparation, prep(o), prep(1).
modes. E>>— o) E>— 1)
Bit flip, not. .
o) 1) alo) + A1) [ af1) + flo)
o —p 0 1\ (a\ (B
I6] ) 1 0)\3) \a
Photonic qubits are usually “flying” qubits.
: . Sign flip, sgn.
Making a superposition state: alo) + 1) ( alo) — BJ1)
() LT 66 ()
8 | o -1/ \8) " -5

9
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So far: Cannot generate proper superpositions.
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One-Qubit Gates Il

“Blac k Box” Problems

Hadamard. Classical:
1 1
alo) + fBl1) sla+P)o) + Z(a—pH)) o Given: Unknown one-bit device, a “black box”.
(0‘) 1 <1 1 ) (a) _ 1 <0f+5> Promise: It either flips the bit or does nothing.
B V2l -1/ \8 V2 \a—p Problem: Determine which using the device once.
e Example: Prepare the state \/%(|o> +1)). Solution: E> ‘> o: doesn’tflip,
1: flips.
D~—{—
o) (o) + 1))
prep(o) . had
With the gates so far, can we prepare —= (|o> +1|1))?
Read-out “Blac k Box” Problems
e Read-out reduces a state destructively to classical Quantum:
information. e Given: Unknown one-qubit device, a “black box”.
th probability |o? Promise: It either applies sgn or does nothing.
= 0 With probabiiity jc|”, Problem: Determine which using the device once.
afo) + f) =G}~ { =1 with probability |3[2. _ e
Solution: V3 1 -1
5(0) + 1))
e Example: ( . )2 . lo)
o with probability (—=) = .5, { :
[>—p——t}—] RS e
. . 1 with probability (75) = 5. o Given: Unknown one-qubit device, a “black box”.
739 + 5 Promise: It either applies not, sgn, sgn.not
or does nothing.
prep(o) . had . meas(Z—b) Problem:  Determine which using the device once.
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- Is this possible?
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